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In this research, we analyze heat transfer of MHD boundary layer flow of 
Casson fluid. Strong nonlinear ordinary differential equations are solved 
numerical using Shooting method with fourth order Runge-Kutta (RK4) 
integration technique. Variations of interesting different parameters on the 
velocity are showed graphically. 
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1. Introduction 

*The characteristics and analysis of flow and heat 
transfer of thin films have attracted the attention of 
many researchers. This is refer to their multi-
applications in engineering such as food stuff 
processing, reactor fluidization, wire and fiber 
coating, cooling of metallic plates, drawing of a 
polymer sheet, aerodynamic extrusion of plastic 
sheets, continuous casting, rolling, annealing, and 
tinning of copper wires. In the extrusion process, this 
understanding is crucial for maintenance of the 
surface quality of extradite. All coating process 
requires a smooth glossy surface for the best product 
appearance and properties like as low friction, 
strength and transparency. As the quality of product 
in the extrusion processes depends considerably on 
the film flow and heat transfer characteristics of a 
thin liquid over a stretching plate, investigated and 
analysis of momentum and heat transfer in such 
processes is essential.  

Lawrence (1970) was the first among others 
researchers to consider the steady two-dimensional 
boundary layer flow driven by a stretching of a sheet 
which moves in its own plane with a velocity varying 
linearly with the distance from a fixed point. Liu and 
Megahed (2012) investigated the effects of variable 
heat flux and internal heat generation on the flow 
and heat transfer in a thin liquid film on a horizontal 
stretching plate in the presence of thermal radiation, 
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similarity transformations are used to reduce the 
governing equations to a set of coupled nonlinear 
ordinary differential equations. Subhas et al. (2009) 
analyzed mathematical model of MHD flow and heat 
transfer to a laminar liquid film from a horizontal 
sheet, the flow of a thin fluid film and subsequent 
heat transfer from the stretching surface is 
investigated with the aid of similarity 
transformation, the transformation enables to 
transform the unsteady boundary layer equations to 
a system of non-linear ordinary differential 
equations. Baag et al. (2016) analyzed the magneto-
hydrodynamic fluid flow on a stretching plate in a 
porous medium. The effects of magnetic field and 
permeability of the medium on the flow field are 
investigated. They have considered flow of a 
conducting viscous fluid through porous sheet using 
Darcy model refer to a variable magnetic field. Hayat 
et al. (2008) studied heat transfer effects on the 
steady flow of a generalized Burgers’ fluid induced 
by a sudden pull of eccentric rotating disks, and 
showed the effect of parameter on velocity, 
temperature, force, and torque exerted by the fluid 
on one of the disks. Recently, Yan et al. (2015) 
examined two elastic heat transfer tube bundles and 
comprehensive comparison on vibration and heat 
transfer on them. Also, Boltenko et al. (2015) 
investigated of pressure drop and heat transfer in an 
annular channel with heat transfer intensifiers. The 
effect of heat transfer enhancement by dimpled 
surface heat exchanger in thermoelectric generator 
studied numerically by (Yiping et al., 2016). 
Manjunatha et al. (2015) discussed the effect of 
radiation on flow and heat transfer of MHD dusty 
fluid over a stretching cylinder embedded in a 
porous medium in presence of heat source. Finally, 
Ahmed investigated MHD viscous Casson fluid flow 
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and heat transfer second-order slip velocity and 
thermal slip over a permeable stretching sheet in the 
presence of internal heat generation/absorption and 
thermal radiation (Megahed, 2015). Recently 
Zeeshan et al. (2016a) discussed the effect of 
magnetic dipole and heat transfer analysis on Jeffery 
fluid flow over a stretching sheet with 
suction/injection. Also, Zeeshan et al. (2016b) 
studied the effect of magnetic dipole on viscous 
ferro-fluid past a stretching surface with thermal 
radiation.  

According the above descriptions, the main 
objective of this study is to apply Shooting method 
with fourth order Runge-Kutta (RK4) integration 
technique to find the approximate solution of 
nonlinear differential equations governing the 
problem of flow and heat transfer of MHD boundary 
layer flow of Casson fluid. The main difference and 
novelty of this work is solving the energy equation 
and find the thermal boundary layer by the present 
analytical method.  

2. Mathematical model 

The MHD boundary layer flow over a flat plate is 
governed by the continuity and the Navier-Stokes 
equations for an incompressible viscous fluid. The 
fluid is electrically conducting under the influence of 
an applied magnetic field 𝐵(𝑥) normal to the 
stretching sheet. The induced magnetic field is 
neglected. The resulting boundary-layer equations 
are (Eqs. 1-3): 
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where, 𝑢 and 𝑣 are the velocity components in the 𝑥 
and y directions, respectively. Also 𝑣, 𝜌 and 𝜎 are 
the kinematic viscosity, density and electrical 
conductivity of the fluid. Parameter of the Casson 

fluid is  𝛽 =
𝜇𝐵√2𝜋

𝑃
 , T is the temperature and 𝐾 is the 

thermal diffusivity of the fluid and a transverse 
magnetic field of uniform strength 𝐵(𝑥) is equal 

to 𝐵(𝑥) = 𝐵0𝑥
𝑛−

1

2. 
The boundary conditions are given below in Eqs. 

4 and 5: 
 

𝑡 = 0:  𝑢(𝑡, 𝑥, 𝑦) = 𝑎𝑥,   𝑣(𝑡, 𝑥, 𝑦) = 0 ,   
𝑇 = 𝑇𝑤(𝑥, 𝑡)  𝑎𝑡  𝑦 = 0,   

𝑢(𝑡, 𝑥, 𝑦) =  𝑣(𝑡, 𝑥, 𝑦) = 𝑇(𝑡, 𝑥, 𝑦) = 0, at 𝑦 > 0                (4) 
𝑡 > 0 ∶ 𝑢 = 𝑎𝑥, 𝑣 = 0,    𝑇 = 𝑇𝑤(𝑥, 𝑡), at 𝑦 = 0 

𝑢 = 0,     𝑇 = 𝑇∞  𝑎𝑠  𝑦 →  ∞                      (5) 

here, 𝑇𝑤 = 𝑇∞ +
𝑐𝜉

−
3
2 

𝑥2

2𝑣
, and 𝑇0 is a heating or cooling 

temperatures. To solve the problem, momentum and 
energy equations are firstly non-dimensional zed by 
introducing the following dimensionless variables: 
Define 𝜓 as the stream function where 𝑢 =

𝜕𝜓

𝜕𝑦
  and  𝑣 = −

𝜕𝜓

𝜕𝑥
 . Applying the following 

transformation (Eq. 6): 
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, where  λ is porosity parameter. 

 
Putting Eq. 6 into Eqs. 1 − 3. Eq. 1 is 

automatically satisfied, Eq. 2 and Eq. 3 becomes 
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where,    𝑃𝑟 =
𝜗

𝐾
. The boundary conditions (4) and 

(5), become (Eqs. 9 and 10): 
 

(0, 𝜉) = 0,   
𝜕𝑓

𝜕𝜂
(0, 𝜉) = 1,    
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𝜕𝑓
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(∞, 𝜉) → 0,      𝜃(∞, 𝜉) → 0,   𝑎𝑡    𝜂 → ∞                      (10) 

 

We consider  𝜉 = 1, where Eq. 7 and Eq. 8 
becomes (Eqs. 11 and 12): 
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The boundary condition, (9) and (10), becomes 

(Eqs. 13 and 14): 
 

𝑓(0) = 0,   
𝜕𝑓

𝜕𝜂
(0) = 1,     𝜃(0) = 1                                    (13) 

𝜕𝑓

𝜕𝜂
(∞) → 0,      𝜃(∞) → 0                                (14) 

3. Numerical solution 

The dimensionless for velocity and temperature 
Eqs. 11 and 12 with the boundary conditions (13) 
and (14) have been solved numerically by shooting 
method with fourth order Runge-Kutta (RK4) 
integration technique. Firstly we reduce the original 
ODEs into a system of first order ODEs by setting:  

 
𝜔1 = 𝑓,𝜔2 = 𝑓′, 𝜔3 = 𝑓′′, 𝜔4 = 𝜃,𝜔5 = 𝜃′ 

 
which gives Eq. 15 and the corresponding initial 
conditions are Eq. 16. 

To solve Eq. 15 with Eq. 16 as an initial value 
problem we must need the values for 𝜑1 and 𝜑but no 
such values are given.  
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The initial guess values for 𝐹′′(0) and 𝜃′(0) are 

chosen and the fourth order Runge–Kutta 
integration scheme is applied to obtain the solution. 
The maximum value of  𝜂 → ∞, to each group of 
parameters is determined when the values of 
unknown boundary conditions at 𝜂 = 0 do not 
change to a successful loop with error less than 10−5. 

4. Discussion and Results 

In this section, one can obtain the solution of the 
problem numerically. Appropriate similarity 
transformation is used to transform and change the 
governing partial differential equations of fluid flow 
and heat transfer equation into a system of non-
linear ordinary differential equations. The lasted 
boundary value problem is solved by the efficient 
shooting method (Figs. 1 and 2). 

 
Fig. 1: Variation of  𝛽 on 𝑓′(𝜂) 

 
Fig. 2: Variation of 𝜆  on 𝑓′(𝜂) 

 

In fact, we discuss and analyze the different 
interesting physical parameters, such as fluid 
parameter  𝛽, Hartmann number  𝑀, porosity 
parameter  𝜆, and Prandtl number  𝑃𝑟. 

Figs. 1 and 2 Show the effect of Casson fluid  𝛽 
and porosity parameter   𝜆, for different values of 
parameters. It show graphically that the magnitude 
of velocity and boundary layer thickness decreases 
with an increase in fluid parameter  𝛽 and  𝜆. It is 
notice that the Hartmann number  𝑀, showed in Fig. 
3 is decrease coefficient of boundary layer fluid flow. 
It is evident from Fig. 4, that the Prandtl number is a 
decrease coefficient of boundary value and  𝜃′(𝜂). 

 
Fig. 3: Variation of  𝑀 on 𝑓′(𝜂) 

 
Fig. 4: Variation of  𝑃𝑟 on 𝜃(𝜂) 

5. Conclusion 

In this article, MHD boundary layer flow of 
Casson fluid is examined with heat transfer. 
Simultaneous effects of energy equation are also 
considered. The governing nonlinear coupled 
differential equations are solved numerically with 
the help of shooting method. The impact of all the 
penitent parameters is discussed and illustrated 
with the help of graphs. 
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